Saturday, February 26, 2011

Innovative SAW-Less Reconfigurable Transceiver Developed

The trend in wireless communication where terminals give their users ubiquitous access to a multitude of services drives the development of reconfigurable radios in deep-submicron CMOS. For emerging standards such as 3GPP-LTE, which use a broad range of operating frequencies and bandwidths, multi-mode capabilities of the radio are a must. Scaldio provides a solution to the handset manufacturers, which face the challenge of developing fully reconfigurable radios for a wide range of networks.

One of the major obstacles today in designing fully reconfigurable radios is making the antenna filters reconfigurable due to their stringent requirements. By making the Scaldio receiver highly linear, more out-of-band blocker interference can be allowed in the RF receiver, avoiding the need of SAW filters and consequently enabling a simplified antenna interface. With 3dB noise figure and capable of handling a 0dBm blocker at 20MHz offset, the receiver has the highest blocker resilience for low noise figures. The fully reconfigurable receiver also achieves the highest linearity (+10dBm IIP3, +70dBm IIP2), and frequency range reported up to now and handles blockers well in any mode.

The transmitter combines adaptive out-of-band noise filtering with voltage-sampling up-conversion to achieve RX band noise down to -162dBc/Hz allowing also here SAW-less operation. SAW-less transmitters become more and more important with the evolution towards future standards such as 3GPP-LTE where transmitters will need to operate in multiple FDD (frequency division duplex) bands.

The reconfigurable receiver and transmitter technology is suitable for mobile handsets and all kind of battery-powered wireless connectivity devices, as well as for base-stations for small cells, and can be programmed to meet the requirements for many standards and dedicated needs.

"We are pleased to have contributed to this major milestone of imec's research program on fully reconfigurable radios using state-of-the-art CMOS technology;" said Yoshinobu Nakagome, associate general manager of Mixed Signal Core Development Division Technology Development Unit at Renesas Electronics Corporation."This accomplishment is an important step towards our integrated RF solution for next generation multimode wireless communication systems. Based on these impressive results, we extended our research partnership with imec for 3 years."


Source

Friday, February 25, 2011

UV-Transparent Coating for Image Sensors

For this reason, CMOS devices are covered with a silicon nitride coating. This chemical compound forms hard layers which protect the sensor from mechanical influences and the penetration of moisture and other impurities. The protective coating is applied to the sensor in the final stage of CMOS semiconductor production. The process is called passivation, and is an industry requirement. Unfortunately, up to now this passivation has entailed a problem: the silicon nitride coating limits the range of optical applications because it is impermeable to light in the UV and blue spectral range. CMOS sensors for high-performance applications, used in special cameras are therefore partially color-blind.

Scientists at the Fraunhofer Institute for Microelectronic Circuits and Systems IMS in Duisburg have found a solution to this problem:"We've developed a new process step," says Werner Brockherde, head of department at Fraunhofer IMS,"that allows us to produce a protective coating with the same properties but which is permeable to blue and UV light." The trick is to increase the proportion of nitrogen in the coating."This reduces the absorption of shortwave light," explains Brockherde.

In simplified terms, the new coating material will absorbless light of an energy higher than blue light, which means the sensor becomes more sensitive at the blue and UV range."This makes CMOS image sensors suitable for use in wavelength ranges down to 200 nanometers," states Brockherde."With standard passivation the limit was about 450 nanometers." To change the structure of the silicon nitride for the coating, the Fraunhofer research scientists had to fine-tune the deposition parameters such as pressure and temperature.

With this process development the experts have expanded the range of applications for CMOS image technology. This could revolutionize UV spectroscopic methods, which are used in laboratories around the world, significantly improving their accuracy. Likewise, CMOS image sensors stand to take up a new role in professional microscopy, e.g. in fluorescence microscopes, providing scientists with images of even greater detail.


Source

Thursday, February 24, 2011

New Stretchable Solar Cells Will Power Artificial Electronic 'Super Skin'

Super skin, indeed.

"With artificial skin, we can basically incorporate any function we desire," said Bao, a professor of chemical engineering."That is why I call our skin 'super skin.' It is much more than what we think of as normal skin."

The foundation for the artificial skin is a flexible organic transistor, made with flexible polymers and carbon-based materials. To allow touch sensing, the transistor contains a thin, highly elastic rubber layer, molded into a grid of tiny inverted pyramids. When pressed, this layer changes thickness, which changes the current flow through the transistor. The sensors have from several hundred thousand to 25 million pyramids per square centimeter, corresponding to the desired level of sensitivity.

To sense a particular biological molecule, the surface of the transistor has to be coated with another molecule to which the first one will bind when it comes into contact. The coating layer only needs to be a nanometer or two thick.

"Depending on what kind of material we put on the sensors and how we modify the semiconducting material in the transistor, we can adjust the sensors to sense chemicals or biological material," she said.

Bao's team has successfully demonstrated the concept by detecting a certain kind of DNA. The researchers are now working on extending the technique to detect proteins, which could prove useful for medical diagnostics purposes.

"For any particular disease, there are usually one or more specific proteins associated with it -- called biomarkers -- that are akin to a 'smoking gun,' and detecting those protein biomarkers will allow us to diagnose the disease," Bao said.

The same approach would allow the sensors to detect chemicals, she said. By adjusting aspects of the transistor structure, the super skin can detect chemical substances in either vapor or liquid environments.

Regardless of what the sensors are detecting, they have to transmit electronic signals to get their data to the processing center, whether it is a human brain or a computer.

Having the sensors run on the sun's energy makes generating the needed power simpler than using batteries or hooking up to the electrical grid, allowing the sensors to be lighter and more mobile. And having solar cells that are stretchable opens up other applications.

A recent research paper by Bao, describing the stretchable solar cells, will appear in an upcoming issue ofAdvanced Materials. The paper details the ability of the cells to be stretched in one direction, but she said her group has since demonstrated that the cells can be designed to stretch along two axes.

The cells have a wavy microstructure that extends like an accordion when stretched. A liquid metal electrode conforms to the wavy surface of the device in both its relaxed and stretched states.

"One of the applications where stretchable solar cells would be useful is in fabrics for uniforms and other clothes," said Darren Lipomi, a graduate student in chemical engineering in Bao's lab and lead author of the paper.

"There are parts of the body, at the elbow for example, where movement stretches the skin and clothes," he said."A device that was only flexible, not stretchable, would crack if bonded to parts of machines or of the body that extend when moved." Stretchability would be useful in bonding solar cells to curved surfaces without cracking or wrinkling, such as the exteriors of cars, lenses and architectural elements.

The solar cells continue to generate electricity while they are stretched out, producing a continuous flow of electricity for data transmission from the sensors.

Bao said she sees the super skin as much more than a super mimic of human skin; it could allow robots or other devices to perform functions beyond what human skin can do.

"You can imagine a robot hand that can be used to touch some liquid and detect certain markers or a certain protein that is associated with some kind of disease and the robot will be able to effectively say, 'Oh, this person has that disease,'" she said."Or the robot might touch the sweat from somebody and be able to say, 'Oh, this person is drunk.'"

Finally, Bao has figured out how to replace the materials used in earlier versions of the transistor with biodegradable materials. Now, not only will the super skin be more versatile and powerful, it will also be more eco-friendly.


Source

Monday, February 21, 2011

World's Smallest Magnetic Field Sensor: Researchers Explore Using Organic Molecules as Electronic Components

For the first time, a team of scientists from KIT and the Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) have now succeeded in combining the concepts of spin electronics and molecular electronics in a single component consisting of a single molecule. Components based on this principle have a special potential, as they allow for the production of very small and highly efficient magnetic field sensors for read heads in hard disks or for non-volatile memories in order to further increase reading speed and data density.

Use of organic molecules as electronic components is being investigated extensively at the moment. Miniaturization is associated with the problem of the information being encoded with the help of the charge of the electron (current on or off). However, this requires a relatively high amount of energy. In spin electronics, the information is encoded in the intrinsic rotation of the electron, the spin. The advantage is that the spin is maintained even when switching off current supply, which means that the component can store information without any energy consumption.

The German-French research team has now combined these concepts. The organic molecule H2-phthalocyanin that is also used as blue dye in ball pens exhibits a strong dependence of its resistance, if it is trapped between spin-polarized, i.e. magnetic electrodes. This effect was first observed in purely metal contacts by Albert Fert and Peter Grünberg. It is referred to as giant magnetoresistance and was acknowledged by the Nobel Prize for Physics in 2007.

The giant magnetoresistance effect on single molecules was demonstrated at KIT within the framework of a combined experimental and theoretical project of CFN and a German-French graduate school in cooperation with the IPCMS, Strasbourg. The results of the scientists are now presented in the journalNature Nanotechnology.

Karlsruhe Institute of Technology (KIT) is a public corporation and state institution of Baden-Wuerttemberg, Germany. It fulfills the mission of a university and the mission of a national research center of the Helmholtz Association. KIT focuses on a knowledge triangle that links the tasks of research, teaching, and innovation.


Source

Saturday, February 12, 2011

Fingerprint Makes Computer Chips Counterfeit-Proof

Fraunhofer researchers will be presenting a prototype at the embedded world Exhibition& Conference in Nuremberg from March 1 to 3.

Product piracy long ago ceased to be limited exclusively to the consumer goods sector. Industry, too, is increasingly having to combat this problem. Cheap fakes cost business dear: The German mechanical and plant engineering sector alone lost 6.4 billion euros of revenue in 2010, according to a survey by the German Engineering Federation (VDMA). Sales losses aside, low-quality counterfeits can also damage a company's brand image. Worse, they can even put people's lives at risk if they are used in areas where safety is paramount, such as automobile or aircraft manufacture. Patent rights or organizational provisions such as confidentiality agreements are no longer sufficient to prevent product piracy. Today's commercially available anti-piracy technology provides a degree of protection, but it no longer constitutes an insurmountable obstacle for the product counterfeiters: Criminals are using scanning electron microscopes, focused ion beams or laser bolts to intercept security keys -- and adopting increasingly sophisticated methods.

No two chips are the same

At embedded world, researchers from the Fraunhofer Institute for Secure Information Technology SIT will be demonstrating how electronic components or chips can be made counterfeit-proof using physical unclonable functions (PUFs)."Every component has a kind of individual fingerprint since small differences inevitably arise between components during production," explains Dominik Merli, a scientist at Fraunhofer SIT in Garching near Munich. Printed circuits, for instance, end up with minimal variations in thickness or length during the manufacturing process. While these variations do not affect functionality, they can be used to generate a unique code.

Invasive attacks destroy the structure

A PUF module is integrated directly into a chip -- a setup that is feasible not only in a large number of programmable semiconductors known as FPGAs (field programmable gate arrays) but equally in hardware components such as microchips and smartcards."At its heart is a measuring circuit, for instance a ring oscillator. This oscillator generates a characteristic clock signal which allows the chip's precise material properties to be determined. Special electronic circuits then read these measurement data and generate the component-specific key from the data," explains Merli. Unlike conventional cryptographic processes, the secret key is not stored on the hardware but is regenerated as and when required. Since the code relates directly to the system properties at any given point in time, it is virtually impossible to extract and clone it. Invasive attacks on the chip would alter physical parameters, thus distorting or destroying the unique structure.

The Garching-based researchers have already developed two prototypes: A butterfly PUF and a ring oscillator PUF. At present, these modules are being optimized for practical applications. The experts will be at embedded world in Nuremberg (hall 11, stand 203) from March 1-3 to showcase FPGA boards that can generate an individual cryptographic key using a ring oscillator PUF. These allow attack-resistant security solutions to be rolled out in embedded systems.


Source

Friday, February 11, 2011

Making a Point: Method Prints Nanostructures Using Hard, Sharp 'Pen' Tips Floating on Soft Polymer Springs

Hard-tip, soft-spring lithography (HSL) rolls into one method the best of scanning-probe lithography -- high resolution -- and the best of polymer pen lithography -- low cost and easy implementation.

HSL could be used in the areas of electronics (electronic circuits), medical diagnostics (gene chips and arrays of biomolecules) and pharmaceuticals (arrays for screening drug candidates), among others.

To demonstrate the method's capabilities, the researchers duplicated the pyramid on the U.S. one-dollar bill and the surrounding words approximately 19,000 times at 855 million dots per square inch. Each image consists of 6,982 dots. (They reproduced a bitmap representation of the pyramid, including the"Eye of Providence.") This exercise highlights the sub-50-nanometer resolution and the scalability of the method.

The results will be published Jan. 27 by the journalNature.

"Hard-tip, soft-spring lithography is to scanning-probe lithography what the disposable razor is to the razor industry," said Chad A. Mirkin, the paper's senior author."This is a major step forward in the realization of desktop fabrication that will allow researchers in academia and industry to create and study nanostructure prototypes on the fly."

Mirkin is the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and professor of medicine, chemical and biological engineering, biomedical engineering and materials science and engineering and director of Northwestern's International Institute for Nanotechnology.

Micro- and nanolithographic techniques are used to create patterns and build surface architectures of materials on a small scale.

Scanning probe lithography, with its high resolution and registration accuracy, currently is a popular method for building nanostructures. The method is, however, difficult to scale up and produce multiple copies of a device or structure at low cost.

Scanning probe lithographies typically rely on the use of cantilevers as the printing device components. Cantilevers are microscopic levers with tips, typically used to deposit materials on surfaces in a printing experiment. They are fragile, expensive, cumbersome and difficult to implement in an array-based experiment.

"Scaling cantilever-based architectures at low cost is not trivial and often leads to devices that are difficult to operate and limited with respect to the scope of application," Mirkin said.

Hard-tip, soft-spring lithography uses a soft polymer backing that supports sharp silicon tips as its"print head." The spring polymer backing allows all of the tips to come in contact with the surface in a uniform manner and eliminates the need to use cantilevers. Essentially, hard tips are floating on soft polymeric springs, allowing either materials or energy to be delivered to a surface.

HSL offers a method that quickly and inexpensively produces patterns of high quality and with high resolution and density. The prototype arrays containing 4,750 tips can be fabricated for the cost of a single cantilever-based tip and made in mass, Mirkin said.

Mirkin and his team demonstrated an array of 4,750 ultra-sharp silicon tips aligned over an area of one square centimeter, with larger arrays possible. Patterns of features with sub-50-nanometer resolution can be made with feature size controlled by tip contact time with the substrate.

They produced patterns"writing" with molecules and showed that as the tips push against the substrate the flexible backing compresses, indicating the tips are in contact with the surface and writing is occurring. (The silicon tips do not deform under pressure.)

"Eventually we should be able to build arrays with millions of pens, where each pen is independently actuated," Mirkin said.

The researchers also demonstrated the ability to use hard-tip, soft-spring lithography to transfer mechanical and electrical energy to a surface.


Source

Thursday, February 10, 2011

World's First Programmable Nanoprocessor: Nanowire Tiles Can Perform Arithmetic and Logical Functions

The groundbreaking prototype computer system, described in a paper appearing in the journalNature, represents a significant step forward in the complexity of computer circuits that can be assembled from synthesized nanometer-scale components.

It also represents an advance because these ultra-tiny nanocircuits can be programmed electronically to perform a number of basic arithmetic and logical functions.

"This work represents a quantum jump forward in the complexity and function of circuits built from the bottom up, and thus demonstrates that this bottom-up paradigm, which is distinct from the way commercial circuits are built today, can yield nanoprocessors and other integrated systems of the future," says principal investigator Charles M. Lieber, who holds a joint appointment at Harvard's Department of Chemistry and Chemical Biology and School of Engineering and Applied Sciences.

The work was enabled by advances in the design and synthesis of nanowire building blocks. These nanowire components now demonstrate the reproducibility needed to build functional electronic circuits, and also do so at a size and material complexity difficult to achieve by traditional top-down approaches.

Moreover, the tiled architecture is fully scalable, allowing the assembly of much larger and ever more functional nanoprocessors.

"For the past 10 to 15 years, researchers working with nanowires, carbon nanotubes, and other nanostructures have struggled to build all but the most basic circuits, in large part due to variations in properties of individual nanostructures," says Lieber, the Mark Hyman Professor of Chemistry."We have shown that this limitation can now be overcome and are excited about prospects of exploiting the bottom-up paradigm of biology in building future electronics."

An additional feature of the advance is that the circuits in the nanoprocessor operate using very little power, even allowing for their miniscule size, because their component nanowires contain transistor switches that are"nonvolatile."

This means that unlike transistors in conventional microcomputer circuits, once the nanowire transistors are programmed, they do not require any additional expenditure of electrical power for maintaining memory.

"Because of their very small size and very low power requirements, these new nanoprocessor circuits are building blocks that can control and enable an entirely new class of much smaller, lighter weight electronic sensors and consumer electronics," says co-author Shamik Das, the lead engineer in MITRE's Nanosystems Group.

"This new nanoprocessor represents a major milestone toward realizing the vision of a nanocomputer that was first articulated more than 50 years ago by physicist Richard Feynman," says James Ellenbogen, a chief scientist at MITRE.

Co-authors on the paper included four members of Lieber's lab at Harvard: Hao Yan (Ph.D. '10), SungWoo Nam (Ph.D. '10), Yongjie Hu (Ph.D. '10), and doctoral candidate Hwan Sung Choe, as well as collaborators at MITRE.

The research team at MITRE comprised Das, Ellenbogen, and nanotechnology laboratory director Jim Klemic. The MITRE Corporation is a not-for-profit company that provides systems engineering, research and development, and information technology support to the government. MITRE's principal locations are in Bedford, Mass., and McLean, Va.

The research was supported by a Department of Defense National Security Science and Engineering Faculty Fellowship, the National Nanotechnology Initiative, and the MITRE Innovation Program.


Source

Wednesday, February 9, 2011

Successful Operation of Carbon Nanotube-Based Integrated Circuits Manufactured on Plastic Substrates

They used this technology to manufacture the world's first sequential logic circuits using carbon nanotubes. The technology could lead to the development of high-speed, roll-to-roll manufacturing processes to manufacture low-cost flexible devices such as electronic paper in the future.

The results were published on Feb. 6, 2011 in the online edition of the journalNature Nanotechnology.

Background

Lightweight and flexible devices such as mobile phones and electronic paper are gaining attention for their roles in achieving a smarter ubiquitous information society. For flexible electronics, as a substitute for conventional solid silicon substrates, there is a demand for integrated circuits to be manufactured on a plastic substrate with high speed and low cost .

Thus far, flexible thin-film transistors (TFT) have been produced using a variety of semiconductor materials such as silicon and zinc-oxide, which require vacuum deposition, high-temperature curing, and complex transfer processes. In recent years, organic semiconductors have been rapidly developing, however such semiconductors still have low-mobility and there are problems with their chemical stability. Recently, carbon nanotube thin films have been attracting attention due to their chemical stability and high-mobility. However, although simple solution processes have been developed to produce TFTs, such TFTs have not been yet fulfilled capability expectations thus far, due to the deterioration of the conduction properties of carbon nanotube thin films through the dispersion process in the solution.

Results

(1) Easy and fast thin film deposition: Gas phase filtration and transfer processes

In conventional solution processes, soot-like carbon nanotube material is first dispersed in liquid via sonication to purify the materials and to separate the tubes from each other. In such processes, it is difficult to form homogeneous carbon nanotube films. In addition, technology has not yet been developed to completely remove the dispersant. In contrast, using our innovative technology, we continuously grow nanotubes in an atmospheric pressure chemical-vapor deposition process. The nanotubes are then collected on the filter and subsequently transferred onto a polymer substrate using simple gas-phase filtration and transfer processes to achieve clean, uniform carbon nanotube films. It takes only a few seconds to deposit the carbon nanotubes. This process may be adaptable to high-speed roll-to-roll manufacturing systems in the near future.

(2) Carbon nanotube TFTs with high-mobility of 35 cm2/Vs and an on/off ratio of 6´106

In conventional solution-based carbon nanotube TFT manufacturing processes, nanotubes are dispersed using powerful ultrasound which cuts the nanotubes and reduces their length. Due to high contact resistance between these short nanotubes and the residual impurities caused by the dispersion process, the resulting TFT mobility was approximately 1 cm2/Vs. Due to the doping effect caused by residual impurities from the dispersion, the on/off ratio was only between about 104~105. When carbon nanotube thin films are manufactured using the above gas-phase filtration and transfer processes, the tubes in the film are as clean and long as those that are grown in the synthesis processes. Accordingly, TFTs with a high mobility of 35 cm2/Vs were achieved. In addition, due to precision control of the nanotube density, an on/off ratio of 6x106was simultaneously achieved. The TFT performance we have achieved is significantly higher than the performance of organic semiconductor TFTs and carbon nanotube TFTs reported so far, and equal to the performance of low-temperature polycrystalline silicon as well as zinc oxide TFTs, which are manufactured using high-temperature processes and vacuum-based processes.

(3) Successful operation of integrated circuits on transparent and flexible plastic substrates

The gas-phase filtration and transfer processes can be applied to manufacture devices on any substrate material. This time, we integrated the high-performance carbon nanotube TFTs on plastic substrates, and achieved successful operations of ring oscillators and flip-flops. High-speed operations have been achieved with a delay time of 12 microseconds per logic gate. The flip-flops that have been manufactured through these processes are the world's first carbon nanotube-based synchronous sequential logic circuits.


Source

Monday, February 7, 2011

Atom-Thick Sheets Unlock Future Technologies

An international team, led by Oxford University and Trinity College Dublin scientists, has invented a versatile method for creating these one-atom thick 'nanosheets' from a range of materials using mild ultrasonic pulses, like those generated by jewellery cleaning devices, and common solvents. The new method is simple, fast, and inexpensive, and could be scaled up to work on an industrial scale.

The team publish a report of the research in this week'sScience.

Each one-millimetre-thick layer of graphite is made up of around three million layers of graphene -- a flat sheet of carbon one atom thick -- stacked one on top of the other.

'Because of its extraordinary electronic properties graphene has been getting all the attention, including a recent Nobel Prize, as physicists hope that it might, one day, compete with silicon in electronics,' said Dr Valeria Nicolosi of Oxford University's Department of Materials, who led the research with Professor Jonathan Coleman of Trinity College Dublin. 'But in fact there are hundreds of other layered materials that could enable us to create powerful new technologies.'

Professor Coleman, of Trinity College Dublin, said: 'These novel materials have chemical and electronic properties which are well suited for applications in new electronic devices, super-strong composite materials and energy generation and storage. In particular, this research represents a major breakthrough towards the development of efficient thermoelectric materials.'

There are over 150 of these exotic layered materials -- such as Boron Nitride, Molybdenum disulfide, and Tungsten disulfide -- that have the potential to be metallic, semi-metallic or semiconducting depending on their chemical composition and how their atoms are arranged.

For decades researchers have tried to create nanosheets of these kind of materials as arranging them in atom-thick layers would enable us to unlock their unusual electronic and thermoelectric properties. However, all previous methods were extremely time consuming and laborious and the resulting materials were fragile and unsuited to most applications.

'Our new method offers low-costs, a very high yield and a very large throughput: within a couple of hours, and with just 1 mg of material, billions and billions of one-atom-thick graphene-like nanosheets can be made at the same time from a wide variety of exotic layered materials,' said Dr Nicolosi.

Nanosheets created using this method can be sprayed onto the surface of other materials, such as silicon, to produce 'hybrid films' which, potentially, enable their exotic abilities to be integrated with conventional technologies. Such films could be used to construct, among other things, new designs of computing devices, sensors or batteries.

The work was conducted by a team including scientists from Oxford University, Trinity College Dublin, Imperial College London, Korea University, and Texas A&M University (USA).


Source

Sunday, February 6, 2011

Engineers Grow Nanolasers on Silicon, Pave Way for on-Chip Photonics

They describe their work in a paper to be published Feb. 6 in an advanced online issue of the journalNature Photonics.

"Our results impact a broad spectrum of scientific fields, including materials science, transistor technology, laser science, optoelectronics and optical physics," said the study's principal investigator, Connie Chang-Hasnain, UC Berkeley professor of electrical engineering and computer sciences.

The increasing performance demands of electronics have sent researchers in search of better ways to harness the inherent ability of light particles to carry far more data than electrical signals can. Optical interconnects are seen as a solution to overcoming the communications bottleneck within and between computer chips.

Because silicon, the material that forms the foundation of modern electronics, is extremely deficient at generating light, engineers have turned to another class of materials known as III-V (pronounced"three-five") semiconductors to create light-based components such as light-emitting diodes (LEDs) and lasers.

But the researchers pointed out that marrying III-V with silicon to create a single optoelectronic chip has been problematic. For one, the atomic structures of the two materials are mismatched.

"Growing III-V semiconductor films on silicon is like forcing two incongruent puzzle pieces together," said study lead author Roger Chen, a UC Berkeley graduate student in electrical engineering and computer sciences."It can be done, but the material gets damaged in the process."

Moreover, the manufacturing industry is set up for the production of silicon-based materials, so for practical reasons, the goal has been to integrate the fabrication of III-V devices into the existing infrastructure, the researchers said.

"Today's massive silicon electronics infrastructure is extremely difficult to change for both economic and technological reasons, so compatibility with silicon fabrication is critical," said Chang-Hasnain."One problem is that growth of III-V semiconductors has traditionally involved high temperatures -- 700 degrees Celsius or more -- that would destroy the electronics. Meanwhile, other integration approaches have not been scalable."

The UC Berkeley researchers overcame this limitation by finding a way to grow nanopillars made of indium gallium arsenide, a III-V material, onto a silicon surface at the relatively cool temperature of 400 degrees Celsius.

"Working at nanoscale levels has enabled us to grow high quality III-V materials at low temperatures such that silicon electronics can retain their functionality," said Chen.

The researchers used metal-organic chemical vapor deposition to grow the nanopillars on the silicon."This technique is potentially mass manufacturable, since such a system is already used commercially to make thin film solar cells and light emitting diodes," said Chang-Hasnain.

Once the nanopillar was made, the researchers showed that it could generate near infrared laser light -- a wavelength of about 950 nanometers -- at room temperature. The hexagonal geometry dictated by the crystal structure of the nanopillars creates a new, efficient, light-trapping optical cavity. Light circulates up and down the structure in a helical fashion and amplifies via this optical feedback mechanism.

The unique approach of growing nanolasers directly onto silicon could lead to highly efficient silicon photonics, the researchers said. They noted that the miniscule dimensions of the nanopillars -- smaller than one wavelength on each side, in some cases -- make it possible to pack them into small spaces with the added benefit of consuming very little energy

"Ultimately, this technique may provide a powerful and new avenue for engineering on-chip nanophotonic devices such as lasers, photodetectors, modulators and solar cells," said Chen.

"This is the first bottom-up integration of III-V nanolasers onto silicon chips using a growth process compatible with the CMOS (complementary metal oxide semiconductor) technology now used to make integrated circuits," said Chang-Hasnain."This research has the potential to catalyze an optoelectronics revolution in computing, communications, displays and optical signal processing. In the future, we expect to improve the characteristics of these lasers and ultimately control them electronically for a powerful marriage between photonic and electronic devices."

The Defense Advanced Research Projects Agency and a Department of Defense National Security Science and Engineering Faculty Fellowship helped support this research.


Source

Saturday, February 5, 2011

GRIN Plasmonics: A Practical Path to Superfast Computing, Ultrapowerful Optical Microscopy and Invisibility Carpet-Cloaking Devices

Working with composites featuring a dielectric (non-conducting) material on a metal substrate, and"grey-scale" electron beam lithography, a standard method in the computer chip industry for patterning 3-D surface topographies, the researchers have fabricated highly efficient plasmonic versions of Luneburg and Eaton lenses. A Luneburg lens focuses light from all directions equally well, and an Eaton lens bends light 90 degrees from all incoming directions.

"This past year, we used computer simulations to demonstrate that with only moderate modifications of an isotropic dielectric material in a dielectric-metal composite, it would be possible to achieve practical transformation optics results," says Xiang Zhang, who led this research."Our GRIN plasmonics technique provides a practical way for routing light at very small scales and producing efficient functional plasmonic devices."

Zhang, a principal investigator with Berkeley Lab's Materials Sciences Division and director of UC Berkeley's Nano-scale Science and Engineering Center (SINAM), is the corresponding author of a paper in the journalNature Nanotechnology, describing this work titled,"Plasmonic Luneburg and Eaton Lenses." Co-authoring the paper were Thomas Zentgraf, Yongmin Liu, Maiken Mikkelsen and Jason Valentine.

GRIN plasmonics combines methodologies from transformation optics and plasmonics, two rising new fields of science that could revolutionize what we are able to do with light. In transformation optics, the physical space through which light travels is warped to control the light's trajectory, similar to the way in which outer space is warped by a massive object under Einstein's relativity theory. In plasmonics, light is confined in dimensions smaller than the wavelength of photons in free space, making it possible to match the different length-scales associated with photonics and electronics in a single nanoscale device.

"Applying transformation optics to plasmonics allows for precise control of strongly confined light waves in the context of two-dimensional optics," Zhang says."Our technique is analogous to the well-known GRIN optics technique, whereas previous plasmonic techniques were realized by discrete structuring of the metal surface in a metal-dielectric composite."

Like all plasmonic technologies, GRIN plasmonics starts with an electronic surface wave that rolls through the conduction electrons on a metal. Just as the energy in a wave of light is carried in a quantized particle-like unit called a photon, so, too, is plasmonic energy carried in a quasi-particle called a plasmon. Plasmons will interact with photons at the interface of a metal and dielectric to form yet another quasi-particle, a surface plasmon polariton (SPP).

The Luneburg and Eaton lenses fabricated by Zhang and his co-authors interacted with SPPs rather than photons. To make these lenses, the researchers worked with a thin dielectric film (a thermplastic called PMMA) on top of a gold surface. When applying grey-scale electron beam lithography, the researchers exposed the dielectric film to an electron beam that was varied in dosage (charge per unit area) as it moved across the film's surface. This resulted in highly controlled differences in film thickness across the length of the dielectric that altered the local propagation of SPPs. In turn, the"mode index," which determines how fast the SPPs will propagate, is altered so that the direction of the SPPs can be influenced.

"By adiabatically tailoring the topology of the dielectric layer adjacent to the metal surface, we're able to continuously modify the mode index of SPPs," says Zentgraf."As a result, we can manipulate the flow of SPPs with a greater degree of freedom in the context of two-dimensional optics."

Says Liu,"The practicality of working only with the purely dielectric material to transform SPPs is a big selling point for GRIN plasmonics. Controlling the physical properties of metals on the nanometer length-scale, which is the penetration depth of electromagnetic waves associated with SPPs extending below the metal surfaces, is beyond the reach of existing nanofabrication techniques."

Adds Zentgraf,"Our approach has the potential to achieve low-loss functional plasmonic elements with a standard fabrication technology that is fully compatible with active plasmonics."

In theNature Nanotechnologypaper, the researchers say that inefficiencies in plasmonic devices due to SPPs lost through scattering could be reduced even further by incorporating various SPP gain materials, such as fluorescent dye molecules, directly into the dielectric. This, they say, would lead to an increased propagation distance that is highly desired for optical and plasmonic devices. It should also enable the realization of two-dimensional plasmonic elements beyond the Luneburg and Eaton lenses.

Says Mikkelsen,"GRIN plasmonics can be immediately applied to the design and production of various plasmonic elements, such as waveguides and beam splitters, to improve the performance of integrated plasmonics. Currently we are working on more complex, transformational plasmonic devices, such as plasmonic collimators, single plasmonic elements with multiple functions, and plasmonic lenses with enhanced performance."

This research was supported by the U.S. Army Research Office and the National Science Foundation's Nano-scale Science and Engineering Center.


Source

Friday, February 4, 2011

New Wave: Efficient Source of Terahertz Radiation Developed

JILA is a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder.

Terahertz radiation -- which falls between the radio and optical bands of the electromagnetic spectrum -- penetrates materials such as clothing and plastic but can be used to detect many substances that have unique absorption characteristics at these wavelengths. Terahertz systems are challenging to build because they require a blend of electronic and optical methods.

The JILA technology, described inOptics Letters,* is a new twist on a common terahertz source, a semiconductor surface patterned with metal electrodes and excited by ultrafast laser pulses. An electric field is applied across the semiconductor while near-infrared pulses lasting about 70 femtoseconds (quadrillionths of a second), produced 89 million times per second, dislodge electrons from the semiconductor. The electrons accelerate in the electric field and emit waves of terahertz radiation.

The JILA innovations eliminate two known problems with these devices. Adding a layer of silicon oxide insulation between the gallium arsenide semiconductor and the gold electrodes prevents electrons from becoming trapped in semiconductor crystal defects and producing spikes in the electric field. Making the electric field oscillate rapidly by applying a radiofrequency signal ensures that electrons generated by the light cannot react quickly enough to cancel the electric field.

The result is a uniform electric field over a large area, enabling the use of a large laser beam spot size and enhancing system efficiency. Significantly, users can boost terahertz power by raising the optical power without damaging the semiconductor. Sample damage was common with previous systems, even at low power. Among other advantages, the new technique does not require a microscopically patterned sample or high-voltage electronics. The system produces a peak terahertz field (20 volts per centimeter for an input power of 160 milliwatts) comparable to that of other methods.

While there are a number of different ways to generate terahertz radiation, systems using ultrafast lasers and semiconductors are commercially important because they offer an unusual combination of broad frequency range, high frequencies, and high intensity output.

NIST has applied for a provisional patent on the new technology. The system currently uses a large laser based on a titanium-doped sapphire crystal but could be made more compact by use of a different semiconductor and a smaller fiber laser, says senior author Steven Cundiff, a NIST physicist.


Source

Thursday, February 3, 2011

Graphene and 'Spintronics' Combo Looks Promising

Graphene, a two-dimensional crystalline form of carbon, is being touted as a sort of"Holy Grail" of materials. It boasts properties such as a breaking strength 200 times greater than steel and, of great interest to the semiconductor and data storage industries, electric currents that can blaze through it 100 times faster than in silicon.

Spintronic devices are being hotly pursued because they promise to be smaller, more versatile, and much faster than today's electronics."Spin" is a quantum mechanical property that arises when a particle's intrinsic rotational momentum creates a tiny magnetic field. And spin has a direction, either"up" or"down." The direction can encode data in the 0s and 1s of the binary system, with the key here being that spin-based data storage doesn't disappear when the electric current stops.

"There is strong research interest in spintronic devices that process information using electron spins, because these novel devices offer better performance than traditional electronic devices and will likely replace them one day," says Kwok Sum Chan, professor of physics at the City University of Hong Kong"Graphene is an important material for spintronic devices because its electron spin can maintain its direction for a long time and, as a result, information stored isn't easily lost."

It is, however, difficult to generate a spin current in graphene, which would be a key part of carrying information in a graphene spintronic device. Chan and colleagues came up with a method to do just that. It involves using spin splitting in monolayer graphene generated by ferromagnetic proximity effect and adiabatic (a process that is slow compared to the speed of the electrons in the device) quantum pumping. They can control the degree of polarization of the spin current by varying the Fermi energy (the level in the distribution of electron energies in a solid at which a quantum state is equally likely to be occupied or empty), which they say is very important for meeting various application requirements.


Source

Wednesday, February 2, 2011

New Transistor for Plastic Electronics Exhibits the Best of Both Worlds

The research team used an existing semiconductor and changed the gate dielectric because transistor performance depends not only on the semiconductor itself, but also on the interface between the semiconductor and the gate dielectric.

"Rather than using a single dielectric material, as many have done in the past, we developed a bilayer gate dielectric," said Bernard Kippelen, director of the Center for Organic Photonics and Electronics and professor in Georgia Tech's School of Electrical and Computer Engineering.

The bilayer dielectric is made of a fluorinated polymer known as CYTOP and a high-kmetal-oxide layer created by atomic layer deposition. Used alone, each substance has its benefits and its drawbacks.

CYTOP is known to form few defects at the interface of the organic semiconductor, but it also has a very low dielectric constant, which requires an increase in drive voltage. The high-kmetal-oxide uses low voltage, but doesn't have good stability because of a high number of defects on the interface.

So, Kippelen and his team wondered what would happen if they combined the two substances in a bilayer. Would the drawbacks cancel each other out?

"When we started to do the test experiments, the results were stunning. We were expecting good stability, but not to the point of having no degradation in mobility for more than a year," said Kippelen.

The team performed a battery of tests to see just how stable the bilayer was. They cycled the transistors 20,000 times. There was no degradation. They tested it under a continuous biostress where they ran the highest possible current through it. There was no degradation. They even stuck it in a plasma chamber for five minutes. There was still no degradation.

The only time they saw any degradation was when they dropped it into acetone for an hour. There was some degradation, but the transistor was still operational.

No one was more surprised than Kippelen.

"I had always questioned the concept of having air-stable field-effect transistors, because I thought you would always have to combine the transistors with some barrier coating to protect them from oxygen and moisture. We've proven ourselves wrong through this work," said Kippelen.

"By having the bilayer gate insulator we have two different degradation mechanisms that happen at the same time, but the effects are such that they compenstate for one another," explains Kippelen."So if you use one it leads to a decrease of the current, if you use the other it leads to a shift of the thereshold voltage and over time to an increase of the current. But if you combine them, their effects cancel out."

"This is an elegant way of solving the problem. So, rather than trying to remove an effect, we took two processes that compliment one another and as a result you have a result that's rock stable."

The transistor conducts current and runs at a voltage comparable to amorphous silicon, the current industry standard used on glass substrates, but can be manufactured at temperatures below 150°C, in line with the capabilities of plastic substrates. It can also be created in a regular atmosphere, making it easier to fabricate than other transistors.

Applications for these transistors include smart bandages, RFID tags, plastic solar cells, light emitters for smart cards -- virtually any application where stable power and a flexible surface are needed.

In this paper the tests were performed on glass substrates. Next, the team plans on demonstrating the transistors on flexible plastic substrates. Then they will test the ability to manufacture the bilayer transistors with ink jet printing technologies.


Source

Tuesday, February 1, 2011

New Transistors: An Alternative to Silicon and Better Than Graphene

A discovery made at EPFL could play an important role in electronics, allowing us to make transistors that are smaller and more energy efficient. Research carried out in the Laboratory of Nanoscale Electronics and Structures (LANES) has revealed that molybdenite, or MoS2, is a very effective semiconductor. This mineral, which is abundant in nature, is often used as an element in steel alloys or as an additive in lubricants. But it had not yet been extensively studied for use in electronics.

100,000 times less energy

"It's a two-dimensional material, very thin and easy to use in nanotechnology. It has real potential in the fabrication of very small transistors, light-emitting diodes (LEDs) and solar cells," says EPFL Professor Andras Kis, whose LANES colleagues M. Radisavljevic, Prof. Radenovic et M. Brivio worked with him on the study. He compares its advantages with two other materials: silicon, currently the primary component used in electronic and computer chips, and graphene, whose discovery in 2004 earned University of Manchester physicists André Geim and Konstantin Novoselov the 2010 Nobel Prize in Physics.

One of molybdenite's advantages is that it is less voluminous than silicon, which is a three-dimensional material."In a 0.65-nanometer-thick sheet of MoS2, the electrons can move around as easily as in a 2-nanometer-thick sheet of silicon," explains Kis."But it's not currently possible to fabricate a sheet of silicon as thin as a monolayer sheet of MoS2." Another advantage of molybdenite is that it can be used to make transistors that consume 100,000 times less energy in standby state than traditional silicon transistors. A semi-conductor with a"gap" must be used to turn a transistor on and off, and molybdenite's 1.8 electron-volt gap is ideal for this purpose.

Better than graphene

In solid-state physics, band theory is a way of representing the energy of electrons in a given material. In semi-conductors, electron-free spaces exist between these bands, the so-called"band gaps." If the gap is not too small or too large, certain electrons can hop across the gap. It thus offers a greater level of control over the electrical behavior of the material, which can be turned on and off easily.

The existence of this gap in molybdenite also gives it an advantage over graphene. Considered today by many scientists as the electronics material of the future, the"semi-metal" graphene doesn't have a gap, and it is very difficult to artificially reproduce one in the material.


Source